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Abstract:  

The majority of visual attention models is based on the concept of saliency map, a two-

dimensional map that encodes the saliency of objects in the surrounding world. We 

attempt a short review of current implementations and present our first thoughts on 

extending the classical saliency-based model by using motion and prior knowledge. 
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Introduction 

Most of our impressions and memories are based on the sense of vision. However, the 

biological mechanisms involved in the human vision are not obvious either for the 

observer or the experienced researcher. How do we understand shape and motion? How 

do we perceive color? The problem becomes more complex due to the fact that the 

human brain receives information for shape, motion and color through (at least) three 

different, parallel and interrelated processing routes [1]. The latter fact arises the second 

equally complex problem of combining these three inputs to form a single image of the 

world.  In an attempt to understand visual perception numerous experiments have been 

performed in order to discover brain regions involved in various aspects of vision. 

Although, the linking of the available information is still a mystery, Ann Treisman [2] 

proved that the formation of the possible links requires attention. Operationally, 

information can be said to be “attended” if it enters short-term memory and remains 

there long enough to be voluntarily reported. Thus, visual attention is closely linked to 

visual awareness [4].  The brain attentional mechanism involved in analyzing and 



recognizing the surroundings distinguishes objects by focusing on elementary 

properties: brightness, color and orientation. 

Attention control has been found to arise by two mechanisms [2, 3]: a bottom-up one 

that biases the observer towards selecting stimuli based on their saliency, and a top-

down one that directs the “spotlight of attention” under cognitive, volitional control. 

The control network deciding between the importance of desired (top-down) and 

unexpected (bottom-up) sites for attention is still unexplored. 

Koch and Ullman, [9], introduced the idea of a saliency map to accomplish preattentive 

selection. This is an explicit two-dimensional map that encodes the saliency of objects 

in the visual environment. Competition among neurons in this map gives rise to a single 

winning location that corresponds to the most salient object, which constitutes the next 

target. If this location is subsequently inhibited, the system automatically shifts to the 

next most salient location, endowing the search process with internal dynamics. 

The investigation presented in this paper aims at a short description of the saliency-

based visual attention and at the integration of additional information into it towards 

volitional control (top-down). 

Saliency-based model of visual attention 

The original version of the saliency-based model of visual attention presented in [4] 

deals with static color images. Visual input is first decomposed into a set of topographic 

feature maps. Different spatial locations then compete for saliency within each map, 

such that only locations which locally stand out from their surround can persist. All 

feature maps feed, in a purely bottom-up manner, into a master saliency map, which 

topographically codes for local conspicuity over the entire visual scene. In primates, 

such a map is believed to be located in the posterior parietal cortex [6] as well as in the 

various visual maps in the pulvinar nuclei of the thalamus [7]. 

Itti and Koch [4, 8] presented an implementation of the proposed saliency-based model. 

Low-level vision features (color channels tuned to red, green, blue and yellow hues, 

orientation and brightness) are extracted from the original color image at several spatial 

scales, using linear filtering. The different spatial scales are created using Gaussian 

pyramids, which consist of progressively low-pass filtering and sub-sampling the input 



image. Each feature is computed in a center-surround structure akin to visual receptive 

fields. Using this biological paradigm renders the system sensitive to local spatial 

contrast rather than to amplitude in that feature map. Center-surround operations are 

implemented in the model as differences between a fine and a coarse scale for a given 

feature. Seven types of features, for which evidence exists in mammalian visual 

systems, are computed in this manner from the low-level pyramids. The implemented 

algorithm is summarized in Figure 1 (central part). 
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Figure 1: Schematic diagram of the saliency-based visual attention including motion and skin
detection module  
gration of Motion into the Model 

ion is of fundamental importance in biological vision systems and contributes to 

al attention as confirmed by Watanabe et al. in [10]. Despite the biological 

ences, only few researchers studied the integration of motion into the saliency-

d model. Several authors [11, 12, 13] attempted the integration of dynamic features, 

their methods lack the interaction between the two different feature classes (static-

amic) to build a global attention map.  



We use a multiresolution gradient-based approach, [14], to estimate optical flow and 

generate a new conspicuity map in the same manner as with static maps (Figure 1-right 

part). Although not fully covered due to lack of space, we think of two possible ways to 

combine dynamic and static features: Either by a weighted summation of the available 

maps or by prioritizing the motion information and attending only the moving objects. 

Integration of top-down information into the model 

It had been thought that bottom-up signals normally achieved attention capture; it is 

now appreciated that top-down control is usually in charge. Involuntary attention 

capture by distracting inputs occurs only if they have a property that a person is using to 

find a target [15]. Towards this direction we attempt to integrate prior knowledge to the 

saliency-based model in order to draw the attention to regions with specific 

characteristics (Figure 1-left part). As an example we consider the face detection case. 

We use a skin detector scheme to generate a skin map and link it with the other feature 

maps. 

Experimental results 

The extended saliency-based model was tested with a real sequence showing a man 

moving his arms and hands in front of a static background. Figure 2 shows the 

generated feature maps and the different image characteristics that each of them 

captures. Obviously, the motion map provides important information by distinguishing 

between moving and non-moving objects. Additionally, the skin map exhibits high 

activation (bright areas) at regions with the desired property. The last row of Figure 2 

shows the saliency maps computed using the classical approach and the extended one. 

In Figure 2(h) the objects of interest, namely the face and the moving arms/hands stand 

out and the salience map is less affected by non-uniform illumination and reflections 

observed in Figure 2(g).   
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Figure 2: (a) original image (in color); (b) intensity map; (c) color map; (d) orientation map; (e)
skin map; (f) motion map; (g) intensity/color/orientation saliency map; (h) intensity/color/
orientation/ motion/skin saliency map 

(h)(g) 
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